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Single Beam Echosounders (since 1950s)




Temporal and Spatial Scales of Coastal Change
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Objectives

Collect elevation, geologic, and benthic habitat data across the coastal zone,
spanning from the top of coastal bluffs to nearshore waters up to at least 15 m
deep.

Assess the viability of performing repetitive surveys to enable change detection
including bluff erosion, spit formation, and a quantification of sediment supply to
the beach and nearshore.

Develop methods, technology, survey platforms, tools, analysis, and applications
for collecting and processing modern data sets needed for coastal and marine
resource management.

Assess the present condition of the nearshore zone and establish an inventory of
key indicators such as beach morphology (e.g., elevation, slope and width), grain
size, and habitat characteristics.

Understand role of bluff sediment supply to nearshore physical and ecological
processes: A Volume; A Slope; A grain size; A upland and aquatic vegetation



Coastal Morphology
Mapping
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Coastal Monitoring Techniques
Cross-Shore Profiles

* Low tide when max amount of beach exposed

 Walk from the dune, across the beach, out to
wading depth (swash zone) typically 0.5to 1 m
below MLLW depending on conditions

e Data points collected using a GPS mounted on
a backpack with a measured antenna height

=) -~ * Data depicts seasonal changes as well as dune
: | elevation, beach width, and sand volume
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Cross-shore profiles

X1-South Profile

~ Dec 2013
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Coastal Monitoring Techniques

Alongshore Surface Maps

e Survey at low tide when max amount of beach exposed

* Drive ATV along beach, back and forth throughout a 3-4 km
section (between dune toe and water’s edge)

* Data points collected using a GPS mounted on ATV with a
measured antenna height

* Data interpolated in the cross-shore to generate beach elevation
maps used for volume change analysis

CLARIS

Coastal LIiDAR and
Radar Imaging




Coastal Monitoring Techniques
Nearshore bathymetry

e Survey at high tide when lower beach face is submerged
* Drive PWC along transect from 1-2 km offshore through surf zone

* Data points collected using a GPS and single beam echosounder
mounted on PWC with a measured antenna height

 Combine data with beach transects to generate continuous
profile of beach and nearshore




USGS/0OSU Survey Vessels

Coastal Profiling System
2007 Honda Aquatrax F-12

_ ;_f - 4-stroke Personal Water Craft (PWC)
‘ /Compﬁter Monitor Length 3.20 m
‘ Beam 1.25m

Raaio Receiver
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Alternative Shallow Water Systems

Ross Laboratories
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2012 Quinault Nation Survey Coverage 2012 Quinault Nation Survey
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2013 Quileute Nation Survey Coverage
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2013 Quileute Nation Survey
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Quileute Coast Nearshore Profile
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‘Typical’ Nearshore CRLC Profile

Grayland Plains
Sub-cell

LongBeach Line 69

Bar Height > 4.0 m

2255
Easting NAD 83 (km

Bar Crest > 1.0 km from shoreline



Nearshore Profile Change

LongBeach Line 69
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Nearshore Profile Change
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Nearshore Profile Change

LongBeach Line 69
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Nearshore Profile Change
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Nearshore Profile Change
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Nearshore Profile Change

LongBeach Line 69
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Nearshore Profile Change

LongBeach Line 69
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Nearshore Profile Change

LongBeach Line 69
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Shoreface: Cross-shore feeding to upper shoreface and barriers
Nearshore: Net offshore bar migration; gradients in longshore
transport; seasonal — interannual coastal change.

Beach: Rapid progradation and aggradation

Backshore: Species-specific ecomorphodynamic feedbacks
between vegetation and dune geomorphology



Prograding beach and foredunes

Elevation contour change (ft)
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Prograding foredunes
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Alongshore Varying Morphology
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Alongshore Varying Morphology
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Alongshore Varying Morphology
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Alongshore Varying Morphology

Outer Bar 1999
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Alongshore Varying Morphology

Outer Bar 1999
Inner Bar 1999

Outer Bar 2003
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Alongshore Varying Morphology
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Alongshore Varying Morphology

Outer Bar 1999
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Alongshore Varying Morphology
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Shoreface Bathymetry Change: 1926-1958
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Enter the Multibeam

Courtesy of LCDR Gonsalves, NOAA



Hydrography — Enter the Multibeam

e Rather than sending a single pulse of energy straight
down; imagine forming multiple beams and directing
them to either side of your vessel.

— -

Courtesy of LCDR Gonsalves, NOAA



Single Beam Density Selected Soundings

Courtesy of LCDR Gonsalves, NOAA



Multibeam Navigation Surface Depth Model

Courtesy of LCDR Gonsalves, NOAA



R/V George Davidson

l \ s
1825-1911

» Beach-landing craft specifically designed for shallow-water hy
topographic surveying

* Trailerable 28’ x 10’ vessel for local launch and recovery
 18” shallow draft

* Twin hull for stability and limited roll;

e 'j: .

straight line tracking; maneuverability
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* Drop-down bow door for land-based surveying (RTK base, scanner targets)
* Moon-pool sonar deployment for repeatability and rigidity



R/V George Davidson: Equipment

Mobile laser scanner
Inertial Measurement Unit (IMU)

2 GNSS antennas u’m B
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Multibeam echosounder .
w/ sound velocity probe Forward-looking sonar




Boat-based lidar: Optech llris HD-ER

e Vertical swath up to 80°

* Images landscape as vessel moves

e Range of up to 1800 m

* Upto 10,000 Hz ping rate

e Beam diameter = 19 mm at 100 m




Alternative Remote Sensing Platforms

N PHOENIX



Multibeam echosounder: R2Sonic 2022

e 256 beams ping simultaneously

 Up to 160° swath or focused for
higher resolution
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Alternative Sonar Systems

Interferometric swath bathymetry and side scan sonar for shallow water

Swath width at
25 m water depth
& 75 m range

Swath width at
25 m water depth
& 150 m range

multibeam)

Approx, 140 m [Bathyswath)

MNote: Under specific circumstances, max. ranges can reac
80 m (468 kHz), 180 m (234 kHz)

-
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Bathyswath swath width = 12 x water depth
(Actually 10 fo 15 depanding on anvironmantal condifions)
Typical multibeam swath width = 3.4 x water depth




Clallam County: Bluff erosion
Survey 1: 21-22 Jun 2012

Survey 2: 1-4 Mar 2013 B
Survey 3: 19-21 Aug 2013
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Spatial Variability in Bluff Recession for the eastern Dungeness drift cell
June 2012-August 2013




Boat-based LiDAR Example of Bluff Recession
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BLUFF RECESSION RATE (mlyr)

1.000
Meters

Recession rate proportionate to chart scale
100 m = 1 mlyr




Coastal Mapping at La Push for Marine Spatial Planning
14-16 Sept 2012
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Coastal Mapping at La Push for Marine Spatial Planning
14-16 Sept 2012

Mobile LiDAR Data ' / ‘ Multibeam Echosounder Data. :
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Coastal LiDAR at Quinault Indian Nation for Marine Spatial Planning
24-25 Jun 2013
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Coastal LiDAR at Quinault Indian Nation for Marine Spatlal PIannlng
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Mgl'ti-l}eam and Coastal LiDAR
Storm Damage Reduction Pr%’;
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Topobathy LiDAR




Topobathy LiDAR
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bathymetry where water clarity is
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Southern Washington Coast
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Conclusions

The coastal zone is dynamic and changes over a range of time
and space scales.

Nearshore bathymetry data is very challenging to collect.

Determining coastal change requires repetitive surveys at
sufficiently high resolution.

A variety of complementary systems, platforms, and methods
are needed to collect elevation, geologic, and benthic habitat
data across the coastal zone.

Both contemporary and historical topo-bathy data are needed
for a wide range of applications.



